Quick Start Guide¶
This guide will help you get started with PubliPlots quickly.
Setting Up Your Environment¶
First, import the necessary libraries:
import publiplots as pp
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Set the style for your workflow
pp.set_notebook_style() # For interactive work
# pp.set_publication_style() # For final figures
Creating Your First Plot¶
Bar Plot¶
Create a simple bar plot from a DataFrame:
# Create sample data
data = pd.DataFrame({
'category': ['A', 'B', 'C', 'D'],
'value': [23, 45, 38, 52]
})
# Create bar plot
fig, ax = pp.barplot(
data=data,
x='category',
y='value',
title='My First Plot',
xlabel='Category',
ylabel='Value',
palette='pastel'
)
plt.show()
Scatter Plot¶
Create a scatter plot with color and size encoding:
# Create sample data
data = pd.DataFrame({
'x': np.random.randn(100),
'y': np.random.randn(100),
'size': np.random.uniform(1, 10, 100),
'group': np.random.choice(['A', 'B', 'C'], 100)
})
# Create scatter plot
fig, ax = pp.scatterplot(
data=data,
x='x',
y='y',
hue='group',
size='size',
sizes=(50, 500),
palette='pastel',
title='Scatter Plot Example'
)
plt.show()
Customizing Your Plots¶
Using Error Bars¶
Add error bars to show variability:
# Create data with multiple measurements
data = pd.DataFrame({
'treatment': np.repeat(['Control', 'Drug A', 'Drug B'], 10),
'response': np.concatenate([
np.random.normal(100, 15, 10),
np.random.normal(120, 12, 10),
np.random.normal(135, 18, 10),
])
})
# Create bar plot with error bars
fig, ax = pp.barplot(
data=data,
x='treatment',
y='response',
errorbar='se', # Standard error
capsize=0.1,
title='Drug Response'
)
Using Hatch Patterns¶
Add hatch patterns for black-and-white publications:
fig, ax = pp.barplot(
data=data,
x='treatment',
y='response',
hatch='treatment',
hatch_map={'Control': '', 'Drug A': '//', 'Drug B': 'xx'},
alpha=0.0,
color='#5D83C3'
)
Advanced Plots¶
Venn Diagrams¶
Create Venn diagrams for set intersections:
# Create sets
set_a = set(range(1, 50))
set_b = set(range(30, 80))
set_c = set(range(60, 100))
# Create 3-way Venn diagram
fig, ax = pp.venn(
sets=[set_a, set_b, set_c],
labels=['Set A', 'Set B', 'Set C'],
colors=pp.color_palette('pastel', n_colors=3)
)
UpSet Plots¶
Create UpSet plots for many-set intersections:
# Create sets
sets = {
'Group A': set(range(1, 60)),
'Group B': set(range(40, 100)),
'Group C': set(range(70, 130)),
'Group D': set(range(30, 90))
}
# Create UpSet plot
fig, axes = pp.upsetplot(
data=sets,
sort_by='size',
title='Set Intersections',
show_counts=15
)
Saving Your Figures¶
Save figures in various formats:
# Save as PNG (high resolution)
pp.savefig(fig, 'my_plot.png', dpi=300)
# Save as PDF (vector format)
pp.savefig(fig, 'my_plot.pdf')
# Save as SVG (editable vector format)
pp.savefig(fig, 'my_plot.svg')
# Save multiple figures at once
pp.save_multiple([fig1, fig2, fig3], 'output_dir')
Configuration¶
Global Settings¶
Configure global plotting parameters using pp.rcParams:
# Set default colors and transparency
pp.rcParams['color'] = '#E67E7E'
pp.rcParams['alpha'] = 0.3
# Set figure size
pp.rcParams['figure.figsize'] = (8, 6)
# Set hatch pattern density
pp.set_hatch_mode(2) # 1=sparse, 2=medium, 3=dense
Next Steps¶
Explore the Plot Examples for more detailed examples
Check the API Reference for complete function documentation
Read about advanced customization options in the examples gallery